Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations
نویسندگان
چکیده
منابع مشابه
A hybridizable discontinuous Galerkin method for time-harmonic Maxwell’s equations
In this paper, we study a bybridizable discontinuous Galerkin (HDG) method for the numerical solution of 2D time-harmonic Maxwell’s equations. The formulations are given, and the relationship between the HDG scheme and the upwind flux DG method is also examined. The presented numerical results show the effectiveness of the proposed HDG method especially in comparison to the upwind flux DG metho...
متن کاملHybridizable discontinuous Galerkin method for curved domains
In this work we present a technique to numerically solve partial differential equations (PDE’s) defined in general domains Ω. It basically consists in approximating the domain Ω by polyhedral subdomains Dh and suitably defining extensions of the solution from Dh to Ω. More precisely, we solve the PDE in Dh by using a numerical method for polyhedral domains. In order to do that, the boundary con...
متن کاملHybridizable Discontinuous Galerkin p-adaptivity for wave propagation problems
A p-adaptive Hybridizable Discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high-order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, while the particular choice of the numerical fluxes opens...
متن کاملHybridizable discontinuous Galerkin (HDG) method for Oseen flow
3 The hybridizable discontinuous Galerkin (HDG) formulation 3 3.1 HDG local problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 HDG global problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Local post-process of the velocity field . . . . . . . . . . . . . . . . . . . . 5 3.4 Assembly of the matrices . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملHybridizable Discontinuous Galerkin Methods for Continuum Mechanics
We present an overview of hybridizable discontinuous Galerkin methods for solving partial differential equations (PDEs) in continuum mechanics [1, 2, 3, 4]. The essential ingredients are a local Galerkin projection of the underlying PDEs at the element level onto spaces of polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; a judicious choice of the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Journal International
سال: 2017
ISSN: 0956-540X,1365-246X
DOI: 10.1093/gji/ggx533